
How to unleash the power of

Typescript
in your project

On the edge of 20’s… remember 00’s

Benefits of using typescript

Testing Trophy by Kent C. Dodds

Structural types = interoperability

Typescript related obstacles

• False type security
• Verbosity
• Repetitions
• Impact on bundle size

Fight…

False type security

Hidden type loss ó wasting time on
debugging

A mistake!

Tighten types to catch
the error

Oh no, types broken!

Fixed the error

Still complaining!

Someone ordered
undefined??

Hours spent on debugging and digging into
node_modules/@types/xstate

or…

type proxy!

Type proxy defined

Type proxy used

Still complaining

Aha!

Easy fix

“Too big or not too big?”

“Your functions are always too big”

Distance between type definition and check

Error m
essage com

plexity

Distance between type definition and check

Error m
essage accuracy

Fight… False type security …

Typescript on input data boundary

Typescript = compile-time only

Typescript = compile-time only
compile + runtime

Typescript = compile-time only
compile + runtime

Modelling JSON-schema with
Typescript interfaces

$ typescript-json-schema --out "schema.json" tsconfig.json "wise_operation"

Generated JSON-schema can be used with any validator
(available for almost all programming langs)

Typescript-is = runtime validation

Code generated by typescript-is

Problem?

Requires ttypescript which is a wrapper around
tsc compiler

Typescript-json-schema

• Great interoperability
• Use by external validators

Typescript-is

• Fast
• Small footprint (generated code

+ typescript-is = 1.8kB)

• Additional build step
• Slow
• Big footprint of validation

libraries (ajv is 300kB)

• Only inside ttypescript enabled
projects

Fight false type security with…

Nominal typing

A helper…

Helper applied

Blessed Error!

Fight false type security with…

Typing globals in ambient space

Process.env and window are now strongly typed
across all submodules of the project

• No additional dependencies
• No boundary crossing
• Mergeable declarations

Fight…

Verbosity

Fight verbosity

The problem of enums

Elegant

• Much boilerplate
• Impact on bundle size

Oops, now READ = 1 !

Numeric enums are hard to debug

Our API now accepts strings

Oops…
This error is going be discovered by by

integration testing…
… or production testing

Objects to rescue

Error: 'string' is not assignable to type
'"create" | "read" | "write"'

Bonus!
Very small footprint

Works.

Also works.

Less repetitions. “delete” no longer
possible

Still verbose…

Is that all we can achieve?

A literal generator!

So clean! So short!

Smallest footprint if app has many
enums!

All mistakes are visible

Fight verbosity with…

Optional chaining (TS 3.7)

They are part of every JS app…

Optional chaining

Optional chaining of functions

Fight verbosity with…

Nullish Coalescing (TS 3.7)

Can you spot the mistake?

Can you spot the mistake?

Prints ‘[INFO] …’

Can you spot the mistake?

ERROR = 0
0 = Falsy

Fixed, but ugly

`??` = nullish coalescing

Fight…

Repetitions
Stay DRY

Fight repetitions with…

Extracting types

Verbose and explicit

Less typing

We are missing a type!

We are missing a type!

`As const fixed the literal`

Can be used on a single property as
well

Fight repetitions

What if an external library doesn’t
provide you with the type you want?

We want it bad…

We want it bad…

We can get it using lookup types!

We can get it using lookup types!

What if we want a type of a
function argument?

We want the configuration type to
strongly type our config file!

Parameters<> helper!

Another helper: NonNullable<>!

Fight repetitions with…

Shipping type containers using
conditional-infer

So many generics!

Even more of them
And

… many repetitions

Let’s refactor!

Type container

For given AppMachine returns a type

Of an object

That will never exist

… but if it existed
It would hold a types for all generics

(easily accessible via lookups)

We can quickly infer any of the
subtypes

All around our app

Let’s apply our container to
AppInterpretedMachine

Reduced

Reduced

Reduced

Interpreted machine
pulled up

Finally… we can see
the code!

Fight repetitions with…

Assertion functions (new in TS 3.7)

The stage,
The actors,
The types

Typescript imposes
this `if` on us

But we already
checked!

Using type guard

We lost the detailed
error messages

This is an assert
function

Fight repetitions with…

Appending types to external
libraries

“Declaration merging”
Not overriding

Optimizing bundle size
In Typescript apps

Optimizing bundle size

importHelpers

__assign is one of the import helpers

Tsc appends them to the output

This library has only 19 files

__assign helper outputted 3 times!

Enabling
importHelpers

Don’t forget to add `tslib` to your
dependencies

ES6: 1.8kB ES6 + importHelpers: 1.6kB

ES5: 2.6kB ES5 + importHelpers: 2kB
(23% reduction)

Optimizing bundle size

importing() only types

We do not need to tell typescript to be
smart

It is smart by default!

Apparently, tsc knows by itself if you
are using types or implementation

Optimizing bundle size

Using `const enums`

Heavy use of enums

~1.4kBcompiled to JS

We only changed the type of enum to
`const enum`

output: ~734B = 50% saved!

All enums replaced with numbers

Beware! Do not export const enums in
public api of a library

Keynote available at

//jblew.pl

